Boosting Bookings with Scraped Expedia & Priceline Data

0
948

Introduction

In the hyper-competitive travel industry, user acquisition and retention heavily rely on pricing accuracy, competitive offerings, and real-time hotel inventory. A US-based OTA startup approached Travel Scrape to develop a robust data acquisition strategy using Expedia and Priceline hotel listing data. The goal? To increase direct hotel bookings, optimize margins, and stay competitive on price.

Objectives

  • Monitor real-time hotel prices and promotions across top OTAs.
  • Compare listings and availability to identify gaps and exclusive deals.
  • Enable dynamic pricing and personalized offers on the client app.
  • Improve SEO and conversion rates by using enriched hotel metadata and user review trends.

Why Expedia & Priceline?

Why-Expedia-Priceline

Expedia and Priceline are two of the largest OTAs globally, hosting millions of listings. Their platforms offer diverse hotel options with varying rates based on location, time, and user profile.

Target Use Case:

  • Scrape data across 50 US cities including New York, Miami, Chicago, and Los Angeles.
  • Focus on mid-range to premium hotels with high booking intent during holidays.
  • Enable filtering by price drops, free cancellations, user ratings, and last-minute deals.

Travel Scrape’s Data Strategy

1. Web Scraping Architecture

Travel Scrape deployed a custom scraping pipeline with rotating proxies, CAPTCHA solvers, and intelligent scheduling to:

  • Avoid detection on dynamic pages
  • Monitor thousands of listings daily
  • Collect structured data using XPath and JSON parsing

2. Key Fields Extracted

Field Example Value
Hotel Name Holiday Inn Express Downtown LA
City / State Los Angeles, CA
Price per Night $139
Discount 18% off
Amenities Free WiFi, Pool, Airport Shuttle
Star Rating 4.2 / 5
User Reviews Count 3,245 reviews
Check-in/out Time 3 PM / 11 AM
Cancellation Policy Free cancellation until 24 hours prior
Source Expedia / Priceline

3. Sample JSON Snippet

Travel-Scrape’s-Data-Strategy

Implementation

Results-Achieved

Phase 1: Data Collection & Cleansing

  • Collected over 500,000+ listings across Expedia and Priceline in 3 months.
  • Normalized hotel data to remove duplicates and match similar listings.
  • Tagged listings with geo-coordinates to map against app location filters.

Phase 2: Price Trend Analysis

  • Mapped daily fluctuations in prices during peak season.
  • Identified time slots when last-minute bookings dropped prices by 20-30%.
  • Used Python-based data models to flag competitive pricing opportunities.

Phase 3: App Integration

  • Integrated scraped data via internal APIs to feed the mobile app search results.
  • Introduced “Best Deal Now” tags on listings matching Expedia discounts.
  • Highlighted free cancellation deals to drive higher confidence bookings.

Results

Metric Before Travel Scrape After Integration
Hotel Booking Rate 3.8% 6.5%
Avg. Time on Hotel Page 42 seconds 1 min 12 sec
Conversion from Deal Alerts 5.2% 11.4%
Refunds/Disputes Ratio 4.9% 2.1%
Daily Active Users (DAU) 12,000 21,000

Visual Insights

Price Distribution Comparison – Expedia vs. Priceline

  • Expedia: Wider discount range (10–35%), skewed toward weekend bookings
  • Priceline: More bundled offers, especially for airport hotels

Heatmap: High-Conversion Hotel Zones (Top 5 Cities)

  • New York – Midtown & Downtown
  • Miami – South Beach
  • Chicago – Magnificent Mile
  • San Francisco – Union Square
  • Las Vegas – The Strip

Challenges Solved

Challenge Travel Scrape Solution
Data Blocking & CAPTCHA Rotating proxies + real browser rendering
Dynamic Content (JavaScript) Headless browser scraping with Puppeteer
Geo-specific Pricing Differences Smart geolocation headers and city-wise scraping
High Duplication Across OTAs Machine learning for deduplication by hotel ID

Client Feedback

"Travel Scrape’s data feeds transformed our app’s hotel search engine. We were able to beat competitors on pricing accuracy and boost conversions in under 90 days."

- CTO, US Travel App Startup

Conclusion

With Travel Scrape’s hotel data scraping services, the client achieved significant gains in booking conversion rates, user engagement, and price competitiveness. Leveraging real-time hotel data from Expedia and Priceline enabled smarter offers, improved trust, and higher margins.

If you're an OTA, metasearch engine, or hotel chain seeking similar growth, Travel Scrape can help power your platform with precise, real-time travel data intelligence.

Zoeken
Categorieën
Read More
Other
Narayan Bali Puja Cost
Narayan Bali Puja Cost is a Hindu ritual performed to attain salvation for ancestors who have not...
By Astrology Service 2025-07-24 07:20:07 0 512
Wellness
Exploring Sex Toys for Men: Your Pleasure, Your Way
When it comes to self-pleasure, guys deserve more than the basics. The world of sex toys for men...
By Adult Emporium 2025-06-13 12:53:44 0 882
Shopping
Call Me If You Get Lost Hoodie: A Bold Statement in Streetwear Culture
In the realm of modern music and fashion, few artists have had the cultural impact of Tyler, The...
By Call Me If You Get Lost Merch 2025-07-30 07:34:07 0 518
Other
Shop the Best 84x84 Hot Tub Cover in Canada Today
If you've been searching for a durable 84x84 hot tub cover that fits well, survives Canadian...
By Northern Hot Tub Covers 2025-08-20 05:38:23 0 424
Spellen
คืนเงินรายวันในบาคาร่า: เพิ่มผลตอบแทนของคุณให้สูงสุดด้วยข้อเสนอคืนเงิน
ในโลกของ...
By Digital Marketer 2025-07-07 00:36:49 0 512
Bundas24 https://www.bundas24.com